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of
Q The trust region problem, minimization of a quadratic function subject to a spherical
.1
trust region constraint, occurs in many optimization algorithms. In a previous paper, the
"4
. authors introduced an inexpensive approximate solution technique for this problem that
~
,‘i
3 involves the solution of a two-dimensional trust region problem. They showed that using this
z approximation in an unconstrained optimization algorithm leads to the same theoretical global
. and local convergence properties as are obtained using the exact solution to the trust region
problem. This paper reports computational results showing that the two-dimensional minimi-
o zation approach gives nearly optimal reductions in the n-dimension quadratic model over a
Y -
- LT .
.’_' wide range of test cases. We also show that there is very little difference, in efficiency and reli-
<
“ ability, between using the approximate or exact trust region step in solving standard test prob-
. lems for unconstrained optimization. These results may encourage the application of similar
:‘.:: approximate trust region techniques in other contexts.
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1. Introduction.

In this paper we consider the problem
minimize {g7d + %d"Bd : ld || < A}, (1.1)
where g¢R®, BeR™" is symmetric, and A > 0. Problems of this type typically arise in trust
region algorithms for unconstrained optimization. We report theoretical and computational
results comparing approximate and exact solution techniques for (1.1). Our results show that
X an inexpensive approximate solution technique of Shultz, Schnabel, and Byrd [1985] appears to
perform almost as well as the more expensive exact method in practice. These results appear

to have interesting ramifications for the solution of trust region problems in several contexts.

In the context of unconstrained optimization, the quadratic function being minimized in
(1.1) is an approximation to the Taylor series of the objective function at the current iterate,
where g is the gradient of the objective function at the current iterate and B is some approxi-
mation to the Hessian at the current iterate. In view of this, we will refer to a function
M(d) = grd +%d Bd as a quadratic model and speak of reducing the value of the quadratic
model. [nstead of just minimizing this approximation to the Taylor series, a trust region algo-
rithm constrains the length of the step to be less than some adjustable parameter J\, recogniz-
ing that the approximation is only accurate in some neighborhood of the current iterate.
Then, the solution or approximate solution to (1.1) is used as the trial step to move to the next
iterate. Thus, in a trust region algorithm, the main source of computational effort, apart from
the function evaluations required, is the work on a problem of the form of (1.1) to determine

the step from the current, iterate.

Trust region algorithms differ in their strategies for approximately solving (1.1). An early

trust region algorithm is the single dogleg algorithm of Powell {1970]. This algorithm takes as ;

‘w - K [ - - - - - - - . ™ . "
:“.r'::*.\. \f,.-_‘f_.\\a\‘r. SPCACH
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its approximate solution to (1.1) the step s, with |ls || < ., on the piecewise linear curve

. 2
passing through the origin, the Cauchy point d = — .11(_:_1.'1_ g, which gives the lowest value of

9 By
the quadratic model gTo +Y%sT Bs in the steepest descent direction, and the Newton point
d = —B—lg, which gives the lowest value of the quadratic model overall. Dennis and Mej
- (1979] suggest a similar strategy, but with a modified double dogleg curve that is biased toward
the Newton point. Trust region algorithms of the dogleg type have the disadvantage that they

: are not intended to deal with the case that B is not positive definite. Note that they constrain

d to the two-dimensional subspace spanned by the Newton and steepest descent directions.

The exact solution to (1.1) satisfies (B+al)s = —g (see Theorem 1). Hebden [1973] and
More {1977] suggest approximately solving (1.1) by iterating on o to obtain a > 0 such that
}}(B-m])-ly il is approximately equal to A, and then taking the step —(B+aI)‘lg. This
approach requires a new factorization of B+al for each new value of o, and thus may require

increased algebraic effort in comparison to the dogleg algorithms.

More recently, Gay [1981], Sorensen [1982], and Mor€ and Sorensen (1983] have suggested

methods that produce steps that attain at least a fixed fraction v < 1 of the minimal value for

(1.1). We call such a method " ~optimal." For most problems, these ™optimal methods compute

the approximate solution to (1.1) in the same way as the More-Hebden methods. In the so-

called "hard case,” when there is no o« such that B+af is positive semi-definite and

{:(B+o[)—1g > A, a r-optimal method requires a direction of negative curvature of B to

. compute its approximate solution to (1.1). These roptimal methods have strong theoretical
properties, while the computational work required is comparable to that required for the

More-Hebden approach.
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Shultz, Schnabel, and Byrd {1985] present an indefinite dogleg algorithm that achieves the
strong theoretical properties of a r-optimal algorithm while retaining the computational
efficiency of a dogleg algorithm. The indefinite dogleg algorithm computes an approximate
solution to (1.1) by performing a two-dimensional quadratic minimization,

minimize (g  d + %d Bd : |ld ! <, de[u,v]},
where u and v are —-B—lg and —g if B is positive definite and are chosen from among ~g¢,
—{B+0[)—1g, and a negative curvature direction when B is indefinite. Note that this
approach, by exact minimization in a two-dimensional subspace, will always produce a step
that reduces the quadratic model by at least as much as other dogleg type algorithms when B
is positive definite. The additional cost of the two-dimensional minimization over a dogleg

approach is simply the work required to exactly solve (1.1) where n = 2, and is thus negligible.

e & & b

The main purpose of this paper is to report some perhaps surprising computational evi-
dence that minimization over a subspace spanned by two reasonably chosen directions tends to )

produce a high percentage of the value given by minimizing exactly over all of R".

-, In Section 2 we briefly compare the theory of ~optimal algorithms and algorithms of the
d ' .

y type considered by Shultz, Schnabel, and Byrd [1985.. In Section 3 we briefly describe the algo-
o rithm tested. Section 4 describes our tests and and reports on their results. Finally, in Section 5

we comment on implications of these results.

2. Theoretical Comparison of Exact and Approximate Trust Region Algorithmas.

This section discusses the percentage of the optimal value of (1.1) that is achieved by any

approximate method ia a class proposed by Shultz, Schnabel, and Byrd [1985].
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First, we give some definitions.

1! 1! is the Euclidean norm on R".

~
~
»
)
.
' .

axXn

For a symmetric BeR , let )\I(B)GR. be the smallest eigenvalue of B, and let
vl(B)eR' be an eigenvector of B corresponding to \,(B). For notational conveni-
ence, we will sometimes suppress the dependeace on B.
aXn + o

For any AcR™ ", let A denote the generalized inverse of A.
For any u,, u,, .., umek', let [uy, up o0y u, | denote the subspace of R" spanned
by u,, ug 0y v,
A function s : R®*xR"" x(0,0c)=R" is called a step computing function, typicaily
denoted by s(g,B,7).
For any g¢R", symmetric BGR'X', and A > 0, let s.(g,B,4) be a solution to (1.1).
Such an s, is referred to as an optimal step computing function.

Y T T
For s¢cR ", let pred(s,g,B)=—s" g — Y%s Bs.

For 7¢(0,1), a step computing function s is ™optimal if for any geR', symmetric

BeR™*, and A > 0,
pred(s(g,8,3),9,B) > 7 pred(s.(g,B,3),9,B) . :
We will now state a theorem characterizing the solution to (1.1). See, for example, Soren-

sen [1982] for a proof of this result. This result will provide the theoretical basis for our step

computing function as well as for r-optimal step computing functions.

Theorem 1. .

Consider any symmetric BeR™®, g¢R™, and ) > 0. Let s.¢R" be a solution to (1.1).1f B is - 8

positive definite and ',:B-lg < A, then s, = -B7'y.
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If B is positive definite and }}B—lg Il > A, then for the unique a >0 such that
H(B+al)g ll = 3, 0. = «(B+al) Ty
If \; <0 and there is an & > —)\, such that W(B+al) g Il = A, then s, = «{B+al) g,

Otherwise, s, = —(B—XII)+9 + §v,, where {¢R is such that H—(B—Xll)+g +&v, |} = A

It is clear from Theorem 1 that any method that attempts to closely approximate the
solution to (1.1) must approximate \,(B) reasonably well in the case that B is not positive
definite, and must also produce some direction of negative curvature in the final case in
Theorem 1, which Mor€ and Sorensen designate the "hard case.” This case can only arise if g is

orthogonal to every eigenvector of B corresponding to the eigenvalue A,.

We now discuss the conditions on a step computing function presented in Shultz, Schna-
bel, and Byrd [1985]. They show that a trust region algorithm for minimization that uses a step
computing function satisfying these conditions has the same global and local convergence pro-
perties as an algorithm using an optimal or m-optimal step computing function. But, as we will
show shortly, these conditions are slightly weaker than the roptimality condition in another

sense.

The conditions on a step computing function s(g,B,)) are given below. The first condi-
tion, originally due to Powell {1970], roughly says that the step provides at least a fixed frac-
tion of the decrease in the quadratic model that would be obtained from the best permissible
step in the steepest descent direction. The second condition roughly says that when B is
indefinite, the step provides at least a fixed fraction of the decrease in the quadratic model
that would be obta'ned from the best permissible step in the direction of greatest negative cur-

vature. The third condition simply says that if B is positive definite and the Newton step is

permissible, then it is chosen.
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Conditions on a Step Computing Function.
Condition #1

There are c,, 31 > 0 such that for all geR”, for all symmetric BeR'x', and for all A >0,

Condition #2

There is a ¢,>0 such that for all g¢R"®, for all symmetric BeR'x', and for all A >0,
pred( s(g,8,3), g, B) > ¢,(—\(B))X".

Condition #3

1

If BeR™™® is positive definite and |!=B 'g !! < A, then s(g,B,A) = —B .

The step computing function for which we present test results in Section 4 satisfies these
three conditions. Example 1 below shows that when B is positive definite, a step satisfying
these three conditions may not be moptimal, for any r > 0. The step computing function used
in this example is exactly the one used in our computational tests in Section 4, when B is posi-
tive definite. The second example given below shows that when B is indefinite, a step comput-
ing function satisfying Conditions #1 and #2 also may not be r-optimal, for any 7> 0. The
step computing function used in this example, minimization over the subspace spanned by the
gradient and a negative curvature direction, is the simplest function that satisfies Conditions

#1 and #2 in the indefinite case.

Example 1 ( positive definite case)

Let ¢ >0, B = diag(l,ez,e‘), g = (ez,ez,es)r, o = ez, and A = ||(B +01)‘1g iI. Then the solution

to (1.1) is

T a_a v =




R ., .".

.....................

and pred(s.,g,B) = 0(62). Define a step computing function by taking s(g¢,B,.) to be the solu-
tion to
N | T 0o -1
minimize {g° d + %d Bd: [{d | < A, d¢[{—g,-B "¢},
which is the step to the minimum of the quadratic model subject to the trust region in the
two-dimensional subspace spanned by the gradient direction and the Newton direction. Since
this step will do at least as well as the best gradient step, it is easy to see that s(g,B,1)

satisfies Condition #1. Condition #2 is vacuously satisfied, since X (B) > 0. Note that

_ - 1
A=0(1), llgll =0(), ¢ By = O('), g B™'g = 0(<*), and 1|B™'g |l = O(—).
€

For given g, B, and 4, s(g,B,\) = ug + UB—xg for some u, veR. Then

pred( s(9,B,2), 9,B) = —pug’ g —vg"B g — % pu’g"Bg —uvg'BB g — % B BB 7Y

T 2T T -
< (=p—pv)g g —%pu’g By —vg By .

Now, since = O(¢), it follows that for all small enough ¢ > 0, ¢ and B_lg are

nearly orthogonal and so {{UB_lg < 0(d)=0(1), and }jug || < O(A)=0(1). Thus,

1
vl < 0(9), lul < O(=), and
€

pred(s(9,8,2),9,8) < —#(1 + 1)O(") — % 4’ 0(") + O(<)
< (= = % 4Y)O(!) - pO() + O()

< (~u ~ %w)o(h) + 0() .

Finally, since max(—u — % uz) = % we have that
ueR

pred(s(g,B,3),9,B) < O(c) .
Thus,

pred(s(g.B,3),9,B)

= 0(c) .

pred(s.,g,B)
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Example 2 (indefinite case)

Let ¢ >0, B = diag(——ez,e,l), g = (O,e,e)T, q = (l,O,O)T, a=2" and A= }:(Bwl)—lg it. Then

the solution to (1.1} is

_ - —€ -1 -
8. = (B+al) ‘e = (0, : y )T=(0, . )T’

)
e+2 1+2¢ 1+2€¢ 142
and pred(s.,g,B) = O(¢). Now, define a step computing function by taking s(g,B,2) to be the

solution to

minimize {gTd + %d  Bd : nd <A, defg,qi}.
Again, this step satisfies Condition #1 since it does at least as well as the best gradient step,
and it can easily be shown to satisfy Condition #2 since ¢ is nearly the direction of greatest
negative curvature of B. The best possible reduction for a step in the direction ¢ is

A
Ea? = 0(62), since A = O(1). Since gT g < , it follows easily that the best reduction

g Bg A

(79 _ o(é).

in the direction ¢ is given by the Cauchy step and is % T =
9 By

red ,B,N),¢,B
gTq = gTBq =0, it is clear that pred(s(¢,B,1),9,8) = 0(62), S0 pred(s(y ).g.B) =
pred(s.,g,B)

Thus, since

O(e).

In both Examples 1 and 2, the condition number of B approaches infinity. Theorem 2
gives a condition on the matrix B that implies the r-optimality of a step computing function
satisfying Conditions #1 and #2. This condition is, roughly, that if B is positive definite, the
condition number of B is bounded, and if B is indefinite, the amount of negative curvature is

not negligible.

Theorem 2. Suppose s is a step computing function that satisfies Conditions #1 and #2, with

IIB B

constants ¢, ¢,, ¢,>0. Let x > 0, and consider any g, B, and 3, with —U— < K.
|>\ (B)l
(R | 1

T T R U




pred(s{g,B,d),9,B) 1 2c ey

> — min{2¢c,c,, 7, ¥ne, , YoKc,),
pTCd(S.,g,B) K 2 + El

where s. is a solution to (1.1} for ¢, B, and A.

Proof. For notational convenience, let s = s(g,B,), pred = pred(s,g,B), and

pred. = pred(s.,g,B). First, note that

. T T . T . T
mn ¢ w+%w Bw > min g w+ min ‘%w Buw
hw <A ww <A hwi<a

> —llg 13 + min{0, ¥\ (B)A?} .

pred. < g 1A + min{0, %{—\(B))A%} . (2.1)

Now, if A\ (B) > 0, then by (2.1)

T
Otherwise, \ (B) < 0. Suppose first that A > c--l—‘LLg—lL . Then by (2.1),

ng

Ho

TR g a2 Ln a2 NI Rt ‘ RPN

pred. < lig \A +% B 1A < 0B AT+ B A = (% + _ ) nB .
[
1

o |

1
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N Thus, by Condition #2,
2 :
. pred IM(B)] A €y 1 2ci¢,
N 2 2 -2 -
S era 1 1 K rs K 2-3
) P (‘/z+':‘)HBHA2 o+ — 2+ (2.3)
€1 €y
o TNT
- Finally, if A <&~ then by Conditions #1 and #2, pred > ¢, !lg!!d, and

B i

MY

»
‘V
(3]

pred > ¢,)\(B)1 2% so by (2.1)

€ “9”A+C2l 1(B)|A)
Y > Y%min{c,, ¢,}. (2.4)
pred, g WA + %I\ (B)A?

The conclusion now follows from (2.2), (2.3), and (2.4). O

{'. MBI AT t .;.__'.('..,\._«-,f-{

3. The Step Computing Function.

We now briefly describe the step computing function used for the tests reported in Sec-

~

o tion 4. It is described in more detail in Shultz, Schnabel, and Byrd [1985]. They show that it
. satisfies the conditions on a step computing function given in Section 2. As shown by Example
'_,:.. 1, however, it is not a roptimal step computing function. We will refer to this function as the
- indefinite dogleg step computing function.
‘_:$ When B is positive definite, our step computing function chooses d to minimize the qua-
o

o

:-’ dratic model over the subspace spanned by the steepest descent and Newton directions, subject
N to the trust region constraint.
o
’a In the indefinite case, our step computing function computes an ae¢(—X,, —2\,], and a
e r

. . . .. v Bv ) .

negative curvature direction v with €[N\, %7;]. These a and v are obtained by using the
I:. v v
‘-
:;- Lanczos method (see, e.g. Parlett {1980} ) to approximate an eigenvalue of B, hopefully X, to
.
-
2

R
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within a relative error of 0.1. We then set o equal to a constant (2 in the implementation
tested) multiplied by the approximation from the Lanczos method, and use the Cholesky fac-
torization to factor B+al and determine whether it is positive definite. If the Cholesky factor-
ization fails, then the eigenvalue approximated by the Lanczos method was not X; in this case
a better direction of negative curvature is obtained from the Cholesky decomposition and the

Lanczos method is restarted using this direction.

The step computing method always starts by attempting to do the Cholesky factorization
of B. Thus, if B is positive definite, we immediately obtain the factorization of B needed to

compute -—B_lg. The results in Section 4 show that an average of roughly 1.1 matrix factori-

zations per iteration are required by this method.

The Indefinite Dogleg Step Computing Function.

Let p¢(0,1) be given. Given g€eR", symmetric BeR.X', and A > 0, if B is not posi-

T
v  Bv
tive definite, compute ae(—X,, —2)\,] and veR" such that < —p,.
v v
If B is positive definite then s(g,B,]) is the solution to
minimize {gTd +%d Bd : Hd it <3, de¢f ~g, -B7Yy ]} (3.1)

If B is not positive definite and {:(Bwl)-lg Il > A then s(¢,B,]) is the solution

to

<A de[~g, ~(B+al) g ]} . (3.2)

minimize {g’d + %d”Bd : |ld !
N(B+al) g 1! < A then s(g,B,l) is

If B is not positive definite and |

~B+al) 'g+€v , (3.3)
where § is selected so that |/s(g,B,2) |} = A and EvT(B +~l)7lg <.

-----------------

.........

IR
___________

------
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The three steps (3.1), (3.2), and (3.3) above are denoted by "P", "I", and "H" for "positive
definite,” "indefinite,” and "hard case,” respectively, in Table 1. An alternative step in the hard
case, perhaps more in keeping with the two-dimensional minimization approach, would be to
choose s(g,B,A) as the solution to

minimize {g"d +%d"Bd : ||d || < A, d{~{B+al)'g, v]} .
The step (3.3) was chosen instead because its form is closer to the step taken by the optimal

algorithm in the hard case.

When X (B) is close to 0, the indefinite dogleg step is sometimes computed by a slight

variant of the above. The augmentation « is instead calculated by

pred,
ag = Az 1 (3-4)
€2

where

pred, = minimize {g7d +%d"Bd : nd i <4, def—g]} .
Then s(¢,B,A) is calculated by (3.2). This modification, which is needed in theory when
A(B) =0 and in practice when X\ (B) is close to 0, is explained in detail in Shultz, Schnabel,

and Byrd (1985]. We denote a step that uses it by S, for "(nearly) semi-definite.”

4. Test Results.

We now report our test results for the indefinite dogleg step computing function described
above. We tested the method both on randomly generated g, B, and .\, and on ¢, B, and A
arising in the context of a trust region algorithm for minimization. Our approach was to com-

pare the decrease in the quadratic model of our step computing function to the optimal

decrease. The results detailed below show, perhaps surprisingly, that on the average the
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indefinite dogleg step computing function attained a high percentage of the optimal decrease.
The tests were performed in double precision arithmetic on a DEC VAX 11/780 in the Depart-

ment of Computer Science of the University of Colorado at Boulder.

We first present results on the behavior of our indefinite dogleg step computing function

on a large number of randomly generated trust region problems.

N
~ -~

First we will describe how the trust region problems were generated. Our goal was to
generate reasonable problems, and yet to make the problems difficult enough to provide a real-
istic test of the difficult cases for the indefinite dogleg step computing function. We tested the
algorithm on a variety of test sets. Each test set consisted of 25 problems, 5 problems each of

dimensions 20, 40, 60, 80, and 100, all generated by the same scheme.

v .

A trust region problem is defined by the symmetric matrix B, a vector g, and the trust

radius A. For each test set we first generated B and g, then chose optimal steps of one of &

s .
o

three forms, and finally set A to be the length of the optimal step. In this way we efficiently

Ty v

generated problems with known optimal solutions. For the first through the nineteenth test

sets, the optimal step was selected by choosing an augmentation a and then taking the optimal

LR

step to be —(B+a])_lg. For the twentieth test set, values of & and ¢ were chosen, and the

LA

optimal step was taken to be —(B+OJ)-19 +§v,, where v, is a normalized eigenvector for X\ (B).

For the last test set, g was taken to be 0, and the optimal step was taken to be v,.

The basic scheme for generating B and g was to first choose the eigenvalues of B from a f
uniform distribution in some interval, using the random number generator of Schrage {1979]. ?
Then, as in Moré and Sorensen [1983], the diagonal matrix consisting of these eigenvalues was >
pre- and post-multiplied by orthogonal matrices, and B was taken to be the resulting matrix.

Next the components of g were randomly generated in some interval, and then pre-multiplied
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by the same orthogonal matrices.

- When an interval is given in the second and third columns in Table 1, it is the interval in
: which the eigenvalues of B and the unmodified components of g are uniformly distributed.
When an interval is listed in the fourth column in Table 1, it is the interval in which the values

of the optimal augmentation « are uniformly distributed.

For the test sets 1 through 6 given in Table 1, no further modifications to B or g were

made. The optimal step s. was simply taken to be —(B+al)—lg, with A = }}(B+a[)_lg n.

- The test sets 7 through 16 were generated in the same way as the first six test sets, but
L in addition changes were made to either B or g, in an attempt to make the problems more
. difficult. In order to generate problems with a more difficult eigenvalue distribution, the smal-
lest eigenvalue from a uniform distribution over (0,2) was sometimes set to 0, and sometimes
switched to the opposite sign. These modifications are designated in Table 1 by a "Z" (for
"zero”) or an "O" (for "opposite"), respectively, following the interval for the eigenvalue range.
In order to generate problems for which the best gradient step tends to do poorly, sometimes
the components of ¢ corresponding to positive eigenvalues were chosen to be uniformly distri-
{ buted in the interval (—1,1), while the components corresponding to negative eigenvalues were

chosen to be uniformly distributed in the interval (—0.1,0.1). The intent of this was to make g

likely to be a direction with large positive curvature, and hence make the best gradient step

tend to give a small reduction of the quadratic model. These problems are designated by a "B"

(for "biased") following the interval listed in the gradient component range column.

For the test sets 17 through 19, the eigenvalues were chosen to be normally distributed
with mean 0. This was done in order to produce test problems with a non-uniform eigenvalue

distribution and to make it more likely that X\ (B) is relatively isolated from any other nega-
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tive eigenvalues of B. The optimal step was taken to be of the form —-(B-é—aI)—ly, as for the
: first 16 test sets. These problems are designated by an "N" (for "normal”) appearing in the
eigenvalue range column. In order to make these problems more difficult, the gradient com-
ponents were chosen in the biased way described above, as designated by a "B" appearing in

- the gradient component range columa.

For the test set 20, the component of the gradient corresponding to the smallest eigen-
value of B was set to 0. Then a random value for ¢ was chosen uniformly in the interval (0,1),
N and the optimal step was taken as s, = —(B +a[)~lg + §v,. Since A was chosen as the length

of s. and the eigenvalue range was such that X\ (B)<0 always occurred, this test set consists of

d
‘ problems of the type called the "hard case” by Moré and Sorensen (1983]. Thus they are desig-
: nated by an "H" (for "hard case”) appearing in the gradient component range column.
Test set 21 consisted of saddle-point p. .blems. The gradient was set to 0 and the
- optimal solution chosen to be the eigenvector of length 1 corresponding to the smallest eigen-
value. These problems are designated in Tabie 1 by an "S" (for "saddle-point”) appearing in
A
N the gradient component range column.
:
A}
. Now we describe the remaining columns of Table 1. For each test set, the fifth columa
5 lists the type of steps taken by the indefinite dogleg step computing function, followed by the
:: number of problems out of the 25 in that set that each step type was taken.
For each test set, the sixth and seventh columns report the average and minimum ratios
~
2' of the decrease in the quadratic model obtained by the indefinite dogleg step divided by the
X
X decrease obtained by the optimal step. The eighth column reports the average ratio of the
- decrease obtained by the best gradient step to the optimal decrease. This is included in order
-
-
" to show that the gradient direction alone does not do particularly weil on these test problems.
.
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Table 1

Fraction of Optimal Reduction Obtained by
the Indefinite Dogleg Step Computing Function
on Randomly Generated Trust Region Problems

Test Eig.
Set Range
Num.
1 (0,2)
2 (-1,1)
3 (-.1,1)
4 (-.01,1)
5 (-01,1)
6 (-01,1)
7 (-1,1)
8 (--1,1)
9 (-1,1)
10 (0,2)0
11 (0,2)0
12 (0,2)O
13 (0,2)0
14 (0,2)Z
15 (0,2)2
16 (0,2)2
17 N
18 N
19 N
20 (-1,1)

21 (-1,1)

—_—
L]
p—
—
[

(-1,1)H

Aug.
Range

(0,.01)
(0,.01)
(0,.1)

(0,.01)
(0,01)
(0,.1)
(0,1)

(0,.01)

(0,.1)

(0,1)

(0,.01)
(0,.1)
(0,1)

(0,.01)

Step
Type

P:25
H:6,1:19
H:1,1:24
S:2,P:12,
H:2,1:9
S:6,P:12,
I:7
S:6,P:12,
[:7

H:25
H:24,1:1
H:25
S:3,H:14,1:8
S:4,H:13,[:8
S:4,H:1,1:20
S:4,I:21

S:25

S:25

S:25

H:25
H:25
H:15,1:10
H:25

H:25

Ave,
Redn.

.96
.97
.98
.96

91

97

.97
.99
.99
97
.97
.95
.96
.96
.98
.99

.98
.99
.99
.97

.97

Min.
Redn.

.60
9
95
72

.12

.86

.87
.90
.96
84
79
.68
.76
.83
.87
.96

83
.84
.99
91

84

Best
Grad.
Ave.

37
.36
.85
.28

.48

.87

.26
42
81
12
37
.53
83
17
37
.78

.08
.63
.94

.34
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3 1) In eigenvalue range column, "O" means smallest eigenvalue is
:ﬁ switched to the opposite sign; "Z” means smallest eigenvalue is

o set to 0; "N" means eigenvalues are normally distributed.

2) In gradient component range column, “B" means that the gradient
components are taken in (—0.1,0.1) if corresponding eigenvalue

:: is negative, taken in (—1,1) otherwise; "H" means that gradient
| "_\". component corresponding to most negative eigenvalue is set to 0;

o~ "S" means that g=0.

L 3) In step type column,
"P" means that step was of the form (3.1),
. "I" means that step was of the form (3.2),

:'_" "H" means that step was of the form (3.3),
A "S" means that step was of the form (3.2) with o given by (3.4).

L2

-l‘_'.

=

~ h.. . . . - »

~j,: We observe from Table 1 that the indefinite dogleg step computing function obtains a
a
,\:: very high fraction of the optimal reduction in the quadratic model. In fact, in all the test sets
\. in Table 1, the lowest average fraction of the optimal obtained is 0.91 in test set 5, and all of
~T

'.“_{, the other average fractions are bigger than 0.95. Note also that the Newton step is never the
)

A

1 optimal step in these tests, so it is not the case that the fraction is high simply because New-
e ton steps are weighting it toward 1. Indeed, the smallest fraction of the optimal decrease
= .
_'::: obtained by any indefinite dogleg step in any of these tests is 0.6 in test set 1. These results
o indicate that the indefinite dogleg step computing function does quite well on solving (1.1),
A .'

1 including problems where B is fairly large and non-sparse, even though it only computes the
:;:i step in a two-dimensional subspace and is not ~optimal in theory.

P

. We now present test results for a trust region algorithm for unconstrained minimization
_::' that uses the indefinite dogleg step computing function to generate its iterates. The code that
o was tested was a modified version of the code described in Schnabel, Koontz, and Weiss (1985,
:::: The exact gradient and Hessian functions were used.

-
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This algorithm was run on a number of minimization problems in a standard test set in
Mor€ Garbow, and Hillstrom [1981]. Table 4 lists the test function numbers and names. The
basic set obtained from these 18 problems consists of three tests for each function, given by
starting the iteration at the standard starting point z,, at 10z, and at 100z,. Test problems
4, 5, and 10 are badly scaled and were omitted from our tests because our implementation
made no attempt to deal with bad scaling. On some of the remaining test functions, some of
the larger starting points led to overflows at the first iterate or first step, and therefore had to

be discarded.

Table 2 contains the results for the tests on this standard test set. The first two columns
contain the test function numbers and the number of variables. The third column contains the
power of 10 by which the standard starting point is multiplied. The fourth and fifth columns
contain the number of iterations and function evaluations, respectively, that were required by
the minimization algorithm using the optimal step computing function. The sixth and seventh
columns contain the number of iterations and function evaluations for the same minimization
algorithm using the indefinite dogleg step computing function. The eighth and ninth columns
contain the average and minimum ratios, respectively, of the reduction in the quadratic model
obtained by the indefinite dogleg step compared to the reduction obtained by the optimal step
computing function. These numbers were obtained as follows. For each step taken by the
indefinite dogleg algorithm, the optimal step was computed for the same quadratic trust region
problem, and the ratio of the reduction in the quadratic model by the indefinite dogleg step to
the reduction by the optimal step was computed. Then the average and minimum of these
ratios was calculated over all the iterations. Finally, the tenth column contains the total

number of Cholesky factorizations attempted by the indefinite dogleg minimization algorithm.

K 1._ - ..‘ ....-.‘..’._.‘,.-' A
S
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\:: Table 2
::':' Performance of the Indefinite Dogleg Step Computing Function
',:'.:' in a Trust Region Algorithm for Unconstrained Minimization
:::. on Standard Test Functions with Standard Starting Points
-
X Fen. Dim. x(0) Opt. Opt. Dog. Dog. Ave. Min. Num.
.-:": Num. Itn. Fen. Itn. Fen. Redn. Redn. Chol.
o
T
~
- 1 3 0 13 14 10 12 .98 91 12
- 1 14 17 15 19 .99 .98 18
: 2 14 18 16 20 .99 .98 16
2 6 0 30 41 47 63 95 53 51
- 3 3 0 2 3 2 3 .99 .99 2
o ] 10 0 14 15 14 15 1. 1. 14
v 1 17 18 17 18 .99 .99 17
2 23 24 23 24 .99 .99 23
7 9 0 12 13 14 15 .85 .39 14
: 1 49 83 42 52 .85 14 45
2 52 64 47 57 92 .35 47
o 7 12 0 13 14 21 22 .59 14 21
o 8 10 0 31 43 31 43 .99 .99 31
" 1 36 48 36 48 99 .99 36
N 2 43 57 43 57 99 96 43
o~ 9 4 0 76 102 75 100 99 .96 75
o 1 85 115 85 115 .99 .96 85
o 2 77 102 83 112 .99 91 83
) 9 10 0 88 115 92 123 97 .88 92
; 1 93 122 97 129 97 87 97
A8 2 100 131 105 139 .97 .86 105
< 11 4 0 8 9 8 9 99 .99 8
S 1 14 15 14 15 .99 99 14
35 2 20 21 20 21 .99 .99 20
: 12 3 0 20 23 25 29 .93 .46 25
13 10 0 9 10 9 12 99 .98 9
:;2;: 1 17 23 17 22 .98 .79 18
- 2 14 15 14 15 .99 99 14
2
.
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14 2 0 20 23 22 27 .99 .99 22
. 1 44 56 43 55 .99 99 43
Y 2 110 146 110 146 99 99 110
" 15 4 0 15 16 15 16 99 94 15
| ‘,';-; 1 20 21 20 21 .99 .98 20
Y 2 26 27 26 27 99 99 26
16 2 0 9 11 9 11 .99 99 11
K, 1 55 75 57 74 99 80 60
b 17 4 0 41 51 40 51 99 95 42
-3 1 43 55 45 59 99 97 a7
- 2 50 67 53 67 .99 95 55
- 18 7 0 7 9 7 9 98 90 9
- 18 8 0 10 15 12 16 97 91 15
P 18 9 0 9 12 9 12 97 81 14
'~ 18 10 0 10 14 10 14 98 95 13
-
o
N
:‘:f The results in columns 8 and 9 of Table 2 show that the indefinite dogleg step computing
a5
function does a good job of approximately solving (1.1). Note that the very high average irac-
-y tions in column 8 are considerably influenced by the presence of a large number of iterates at
o
- which the Newton step was taken. Nonetheless, the minimum values in column 9 show that
' the dogleg step does surprisingly well, even in the worst cases. The lowest fraction of the
optimal value obtained for any step of any of the trust region problems encountered is .14, and
«' the minimum is greater than .80 in 37 of the 43 test problems.
‘f It is also interesting to observe that the indefinite dogleg step minimization algorithm
S::'_ performs only slightly worse than the optimal step minimization algorithm in terms of itera-
N tions and function evaluations. Further, the average number of Cholesky factorizations per-
':::: formed by the algorithm on all the Hessian matrices in this test set is only 1.05, and the aver-
.,\.
::-: age number of Cholesky factorizations on indefinite Hessian matrices is just 1.14.
)
~ Since we were especially interested in how the indefinite dogleg step computing function
l.'.
) would perform in the presence of indefinite Hessians, we formed a second test set by using
.
\.
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several different starting points for each of the problems 2, 12, and 18. These problems were
chosen because they seemed to be fairly difficult, and yielded a considerable number of
indefinite Hessian matrices when used in the tests for Table 2. The starting points for the tests
reported in Table 3 were chosen to be scattered around the standard starting point. Table 3
follows the same format as Table 2, except that the column for the starting point has been

removed.

In Table 3 we still observe that the indefinite dogleg step usually obtains a quite high
fraction of the optimal reduction. There are some low minimum reductions, but the average
reductions are still very high. The overall performances of the indefinite dogleg and optimal

minimization algorithms in terms of iterations and function evaluations are similar.

Our results also indicate that there is very little difference in efficiency or reliability
between using the the optimal step and using the indefinite dogleg step in an unconstrained

minimization algorithm.

6. Conclusions.

Our computational results indicate that even though the indefinite dogleg step computing
function is not optimal, it usually obtains a quite high fraction of the optimal reduction in

the quadratic model in practice.

These results may not have great significance in situations in which the algebraic work of
factoring (B+al) or calculating the eigenvalues of B is negligible. For problems with a small

number of variables, or with a very expensive objective function, the best course of action

might be to simply use an optimal step computing function. Not only does an optimal step
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Table 3

Performance of the Indefinite Dogleg Step Computing Function
in a Trust Region Algorithm for Unconstrained Minimization
on Standard Test Functions with Standard Starting Points

Fen.

Num.

18

Dim.

Opt.
Itn.

56
g2
33
94
73
97
151
32
48
115
28

22
21
19

14
19
20
23

Opt.
Fen.

82
66
45
125
102
130
190

69
147
37

26
26
24

18
26
29
30

Dog.

Itn.

52
90
38
95
62
43
145
46
36
120
41

23
23
26

15

20
22

Dog.
Fen.

70
119
58
125
86
61
186
63

156
57

27
28
31

Ave.
Redn.

.94
91
79
.97
.98
.78
.96
.82
94
.92
.84

98
95
.94

.98
92
.98
97

Min.
Redn.

.38
.23
A7
48
75
.03
15
.02
47
.03
.15

87
.55
42

81
.53
.87
.86

Num.
Chol.

58
97

100
64
48
157

38
127
47

23
23
26

I8
24

26
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Table 4
List of Standard Test Function Numbers and Names
N Test Function Number Test Function Name
l Helical Valley Function
2 Biggs Exp6 Function
. 3 Gaussian Function
- 4 Powell Badly Scaled Function
’ 5 Box 3-Dimensional Function
6 Variably Dimensioned Function
y 7 Watson Function
. 8 Penalty Function [
g 9 Penalty Function I
‘ 10 Brown Badly Scaled Function
. 11 Brown and Dennis Function
12 Gulf Research and Development Function
) 13 Trigonometric Function
. 14 Extended Rosenbrock Function
. 15 Extended Powell Singular Function
. 16 Beale Function
17 Wood Function
. 18 Chebyquad Function
L
N computing function provide the best possible solution to (1.1), but, given the code to compute
. the eigenvalue information for B, the optimal step computing function may weil be easier to
" implement than other step computing functions.

In other stuations, however, the observations in this paper are of interest and may sug-
gest new algorithms. For problems where n is large, the two-dimensional minimization idea

may be useful. Also, there appear to be various situations where a trust region approach

seems attractive but the calculation of the optimal step is impractical. Examples include the
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constrained optimization algorithm of Celis, Dennis, and Tapia [1985], and the tensor methods
for nonlinear equations and optimization of Schnabel and Frank [1984,1986]. In these cases
there is a natural two-dimensional subspace but no obvious dogleg path, so two-dimensional
minimization is the apparent choice. The results of this paper seem to encourage the use of

such strategies.
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